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Abstract

Efficient vision transformer remains a bottleneck for high-resolution images and
long-video related real-world applications. Generalized Spatial Propagation Net-
work (GSPN) [1]] addresses this by replacing quadratic self-attention with a line-
scan propagation scheme, bringing the cost close to linear in the number of rows or
columns, while retaining accuracy. Despite this advancement, the existing GSPN
implementation still suffers from (i) heavy overhead due to repeatedly launching
GPU kernels, (ii) excessive data transfers from global GPU memory, and (iii) redun-
dant computations caused by maintaining separate propagation weights for each
channel. We introduce GSPN-2, a joint algorithm—system redesign. In particular,
we eliminate thousands of micro-launches from the previous implementation into
one single 2D kernel, explicitly pin one warp to each channel slice, and stage the
previous column’s activations in shared memory. On the model side, we introduce a
compact channel propagation strategy that replaces per-channel matrices, trimming
parameters, and align naturally with the affinity map used in transformer attention.
Experiments demonstrate GSPN-2’s effectiveness across image classification and
text-to-image synthesis tasks, matching transformer-level accuracy with signifi-
cantly lower computational cost. GSPN-2 establishes a new efficiency frontier for
modeling global spatial context in vision applications through its unique combi-
nation of structured matrix transformations and GPU-optimized implementation.
Project page: https://wh3j363636.github.i0/GSPN2/

1 Introduction

Vision transformers have underpinned nearly every state-of-the-art (SOTA) vision foundation model:
text-to-image diffusion networks (e.g., Stable Diffusion [2]]), vision-language aligners such as
CLIP [3]] and SigLIP [4], and modern detection/segmentation pipelines [5} |6] — all depend on
their dense, token-wise attention to encode visual concepts. Since this attention operator scales
quadratically with the number of pixels, practical deployments still cap the input—SigLIP [4], for
instance, limits the input images to 512 x 512—to avoid prohibitive latency and memory. Recently,
several efficient-attention variants have been proposed, such as FlashAttention [7} 8], linear atten-
tion [9} 10} [11]], and state-space models [[12} [13]]. Among them, Generalized Spatial Propagation
Networks (GSPN) [1]] uniquely replace 2D self-attention with a line-scan approach, which reduces
the computational complexity from quadratic to approximately linear to the image’s width or height.
Remarkably, GSPN maintains or even surpasses baseline accuracy while achieving up to an 84x
speed-up for 16 K-resolution diffusion inference.

While most efficient attention backends can reuse existing matrix-multiply or scan primitives, GSPN’s
line scan demands a completely new CUDA implementation. Standard Softmax attention breaks
down into a series of GEMM-based matrix multiplies plus a softmax [14]]. FlashAttention [7} 8]
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instead fuses those steps into a single tiled GEMM loop. State-space methods like Mamba [[12, [13]]
recasts attention into a streaming recurrence and implement it with fast prefix-sum scans across
tokens.

By contrast, GSPN adopts a 3-neighbour line-scan approach, which is neither a matrix multiply, nor
a prefix scan—its dependency pattern would explode combinatorially. Therefore, a specifically built
CUDA kernel for GSPN is required to unlock its sub-quadratic cost.
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Figure 1: GSPN-2 achieves transformative performance improvements over GSPN-1[1]] and other
efficient attention variants, running up to 30-50x faster across diverse input configurations on modern
GPU architectures.

While GSPN-1 offers theoretical advantages in computational complexity, its initial CUDA imple-
mentation [1]] struggled to translate these into practical speedups. Profiling reveals that GSPN-1’s
reference CUDA code, which launches a tiny kernel for each column step, severely underutilizes the
GPU, as it achieves just 3—-8% of peak memory bandwidth and low SM occupancy. This inefficiency
stemmed from several critical bottlenecks: (1) the kernel-launch overhead from thousands of separate
launches, which prevents the SMs from staying fully busy; (2) inefficient global-memory (HBM)
access, with each step reloading data without on-chip reuse or coalescing; and (3) poor cache locality
and growing runtime as channel counts increase.

To overcome the limitations of the original GSPN implementation, we introduce GSPN-2, an inte-
grated algorithmic and kernel-level redesign. Specifically, GSPN-2 (a) consolidates all propagation
steps into a single unified CUDA kernel, eliminating costly repeated launch overheads; (b) introduces
a compact multi-channel propagation mechanism that projects features into a lower-dimensional
proxy space to reduce concurrent thread blocks and maintain constant-time performance; and (c)
refines the grid and block configuration to improve warp-level efficiency and memory coalescing,
with optional on-chip caching for reuse of hidden states. To further address the GPU concurrency
bottleneck—where runtime increases sharply once the number of active thread blocks exceeds the
device’s scheduling capacity—GSPN-2 employs a lightweight channel-projection strategy. By pro-
jecting the input tensor into a compact proxy space before propagation, the system reduces the
effective computational dimension, improving cache reuse and maintaining high throughput even
under large batch and channel counts (see Section4.2). These combined algorithmic and kernel-level
improvements deliver substantial performance gains: on an NVIDIA A100 GPU, the runtime for a
1024 x 1024 x 8 input decreases from 71.4 ms in GSPN-1 to just 1.8 ms in GSPN-2—achieving an
overall 40x speedup (see Figure [3).

Our experimental evaluation comprehensively validates GSPN-2. Rigorous efficiency analysis
demonstrates that GSPN-2 runs up to 30 faster than GSPN-1 across diverse input configurations,
with performance profiling confirming near-optimal hardware utilization (over 90% of theoretical
peak memory bandwidth). We then validate GSPN-2’s effectiveness across vision tasks: image
classification and text-to-image synthesis. On ImageNet, GSPN-2 achieves accuracy comparable to
transformer models at significantly lower computational cost. In text-to-image synthesis, GSPN-2
significantly improves semantic consistency and visual quality when integrated with existing diffusion
models. These results confirm GSPN-2 as a versatile component for efficiently modeling global
spatial context across diverse vision applications.

2 Related Works

Efficient Attention Mechanisms. Transformer architectures [[15] have become foundational com-
ponents in modern vision and language models, but their quadratic computational complexity with
respect to sequence length creates significant efficiency challenges. FlashAttention [7, 8] [14] ad-



dresses these limitations through algorithmic innovations that optimize memory access patterns and
reduce unnecessary memory reads/writes during attention computation. By leveraging tiling strategies
and fusing operations to maximize data reuse within fast GPU memory hierarchies, FlashAttention
substantially improves throughput and enables processing of longer sequences without compromising
model quality. These efficiency gains have been instrumental in scaling transformer models to
increasingly larger contexts and higher resolution inputs, but the fundamental quadratic complexity
of attention remains an inherent limitation.

Sequence Modeling in 1D and 2D Space. Sequential modeling has been dominated by recurrent
architectures like LSTMs [[16], GRUs [17], and 2D-LSTMs [I18} [19], which process data through
non-linear transformations. Despite their effectiveness, these approaches face fundamental limitations
in computational efficiency and scalability due to their inherent sequential nature. Their non-linear
propagation mechanisms also struggle with long-term dependencies, often suffering from gradient
vanishing or exploding issues [20} 21] that prevent distant information from effectively influencing
future states. State Space Models (SSMs) have emerged as promising alternatives to attention-based
architectures, offering linear computational complexity with respect to sequence length. Pioneering
approaches like S4 [22]] and Mamba [12] implement continuous-time dynamical systems through
discretized state spaces, enabling efficient modeling of long-range dependencies without the quadratic
cost of attention. These models maintain a compact hidden state that evolves through linear recurrence
relations, often employing selective scanning mechanisms to adapt to input-dependent patterns. For
visual tasks, several approaches [23l 24} 125 126} 27] have adapted SSMs by linearizing 2D image
data, though this transformation potentially compromises inherent spatial relationships present in the
original data structure.

Spatial Propagation Networks. The Spatial Propagation Network (SPN) [28]] pioneered linear
propagation specifically for 2D data, initially designed as a single-layer component on top of CNNs
for sparse-to-dense prediction tasks like segmentation. However, SPN’s potential as a scalable
foundational architecture comparable to Vision Transformers (ViT) remains largely unexplored.
Moreover, SPN’s sequential processing across different spatial directions inherently limits its compu-
tational efficiency, and it fails to adequately address long-range propagation requirements crucial for
high-level vision tasks. Our GSPN architecture advances beyond these limitations by implementing
parallel row/column-wise propagation mechanisms that enable efficient learning of affinity matrices
while maintaining gradient stability and effective long-range correlation. Through both theoretical
analysis and empirical evaluation, we demonstrate that GSPN represents a compelling alternative to
established ViT and Mamba architectures.

3 Background

We introduce the background of the propagation algorithm itself and the GPU design principles.
In Section we review modern A100 architecture—the grid/block/warp execution model, on-chip
shared memory, and high-bandwidth device memory. We explain how these features shape kernel
performance. In Section[3.2] we review GSPN’s line-scan propagation formulation. The final section
summarizes how this recurrence is mapped onto CUDA blocks in a custom kernel implemented in
[1] to realize parallelism.

3.1 GPU Hardware Characteristics

On modern NVIDIA GPUs like the A100, computation is dispatched as a grid of thread blocks. Each
block can be 1D, 2D, or 3D (e.g., blockDim. x alone for 1D block, or both blockDim. x and
blockDim.y for 2D block). Inside each block, threads are organized into warps of 32 threads
each. The total number of warps per block depends on the block’s thread count (for example, a block
with 1024 threads has 32 warps). To maximize throughput, blocks must be sized to supply enough
active warps per Streaming Multiprocessors (SM) without exceeding their on-chip shared-memory or
register limits—this balance is what drives high occupancy. Within each block, threads share a small
SRAM buffer ("shared memory") for low-latency reuse, while all other tensors are streamed in and
out of off-chip high-bandwidth memory (HBM) through the L.2/L.1 caches.

3.2 2D Spatial Propagation Algorithm Overview

Generalized Spatial Propagation Networks (GSPN) [1] perform 2D spatial modeling through row-
by-row (or column-by-column) linear propagation. For an input image x € R¥*WXC this involves
processing one dimension (e.g., rows) sequentially, while computations within each step (e.g., along
arow) are parallelized. Focusing on row-wise propagation, where i € [0, H — 1] is the row index,
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Figure 2: Pipeline optimization from GSPN-1 to GSPN-2. GSPN-1 launches separate kernels
for each image column ¢, leading to redundant HBM access and limited temporal data reuse. Each
kernel independently computes h§ = wih§ | + A © xf, fetching and storing intermediate states via
global memory. GSPN-2 fuses these operations into a single kernel with an inner loop over columns,
enabling cache and register reuse of h{_,, G;, and other temporaries. This design minimizes memory

traffic, maximizes locality, and leverages shared memory for efficient on-chip computation.

leth; .. € RW be the hidden state for row i and channel c, Ti:c € RW be the corresponding input
row, and ;.. € RY be a learnable, input-dependent scaling vector for channel ¢ at row ¢, and

w;,. € RW*W be a learnable, per-channel propagation weight matrix for row i and channel c. The
per-channel recurrence is:

hi:e = Wi chi—1,:c +Diag(Ni: )i c (n

The per-channel hidden state h; . . is then transformed by an output layer. Let u; .. € R"Y be a
learnable output vector. The final output for row 4 and channel c is given by:

Yie = WUic O] hi,:,c (2)

Guided by the Stability-Context Condition introduced in [1]], w; . is learned and normalized to be
row-stochastic—every row sums to 1—thereby guaranteeing numerical stability while still capturing
long-range context. In addition, each element in row ¢ connects to only three neighboring elements in
the previous row 7 — 1 (e.g., top-left, top-center, top-right for top-to-bottom propagation), resulting in
w; . being a tridiagonal matrix. A single pass of this recurrence connects pixels within a local region.
To achieve full-grid propagation, GSPN performs four complementary directional passes—top-to-
bottom, bottom-to-top, left-to-right, and right-to-left. By combining the 3-neighbor kernel with these
four passes, the model attains dense pairwise connectivity across the image while remaining efficient,
since only three coefficients are learned per pixel.

This row-wise propagation requires O(H ) sequential steps, where within each step, all W elements
of the current row are computed in parallel (or vice versa for column-wise propagation), yielding an

O(max(H, W)) computational complexity—equivalent to O(+/N) for square images with N pixels.
GSPN also offers a local variant, i.e., GSPN-local, which splits each row or column into fixed-length
segments of size kchunk and confines propagation to within those segments. Finally, this recurrence
is related to linear attention. Let A; = blockdiag(Diag(\; . 0),...,Diag(A; . c—1)). The overall

operation is y; = u; Z;;E(Hi= j+1Wr)A;z; which resembles a linear attention mechanism, with

3 . .
IL_ j+1 Wy the normalization term.

3.3 CUDA Implementation in GSPN [1]

The baseline GSPN implementation, referred to as GSPN-1, maps the 2D spatial propagation (Eq. [I)
to CUDA by iterating sequentially over the propagation dimension (e.g., height ') while parallelizing
computations across the orthogonal dimension (e.g., width ). To handle the inherent sequential
dependency along the propagation axis (e.g., rows ¢ = 0, ..., H — 1), it launches separate, relatively
lightweight CUDA kernels for individual steps or small chunks, as illustrated in Figure 2{a).

For each step in the propagation sequence (e.g., processing a column based on the previous one in
a left-to-right scan), GSPN-1 launches a new CUDA kernel, which introduces significant kernel-
launch overhead along the propagation direction. Within each kernel, computations are parallelized
across the orthogonal spatial dimension (width W), batches (/V), and channels (C) by flattening
these dimensions into a 1D grid of thread blocks (typically blockDim.x = 512). However, this
simplistic mapping ignores CUDA’s warp-level scheduling and often results in suboptimal hardware



utilization. Moreover, all tensors—including inputs (z), hidden states from the previous step (h;—1 . ),
learnable weights (w; ¢, A;.: ), and the current outputs (h; . .)—are repeatedly read from and written
back to global GPU memory (HBM), causing high latency and minimal data reuse in on-chip memory.
These issues—frequent kernel launches, suboptimal thread mapping, and excessive global-memory
access—together limit the efficiency of GSPN-1, motivating the redesign presented in Section 4]

4 GSPN-2: Efficient Algorithm and System Co-design

While the baseline GSPN-1 implementation established functional correctness, its CUDA design suf-
fered from inefficiencies—frequent kernel launches, flat 1D block configurations, and unpredictable
memory reuse, which led to suboptimal data locality and high launch overhead. To address these
limitations, we redesign both the algorithm and its GPU execution pipeline through GSPN-2, focusing
on three prmmples (1) a single-kernel propagation scheme that eliminates redundant launches 2)
channel-compressive propagation with shared weights and proxy compression to reduce concurrency
load, and (3) optimized CUDA execution leveraging shared memory, coalesced access, and stream-
level parallelism. This section introduces the evolution of GSPN-2, from its single-kernel design to
memory- and concurrency-aware optimization.

4.1 A Single-Kernel Design

Kernel Fuse. We consolidate these numerous small kernels into a single, unified CUDA kernel.
This single kernel is designed to process the entire outer-loop (e.g., all columns in a left-to-right
scan) within the kernel, while still parallelizing computations across the other dimensions (batch,
channels, and rows/height). By eliminating thousands of micro-launches, this single-kernel approach
drastically reduces launch overhead. For instance, preliminary tests showed that simply moving
from a multi-kernel to a single-kernel implementation for a typical GSPN configuration immediately
yielded a significant performance boost (e.g. 1.2x faster) in Figure[3] even before other memory or
algorithmic optimizations were applied. We illustrate substantial performance gains from this and
subsequent optimization stages across various hardware configurations and input dimensions (batch
size, channels, height, width) in Figure [3|and Section[5.1]

Block and Grid Configuration. In GSPN-1, the kernel used a flat 1D grid of blocks (b1lockDim. x
= 512) where threads were linearly mapped across combinations of batch (IV), channel (C), height
(H), and chunk index (Kkchunk). This configuration resulted in insufficient locality and suboptimal
warp utilization. In GSPN-2, the CUDA grid is indexed by the tuple (chunk,n, ¢), so that each
block corresponds to one unique (chunk, n, ¢) combination and processes a full spatial column along
height. The grid therefore contains kcpynx X IV X C blocks in total, which can be realized as a 1D
grid or a 3D grid to respect CUDA’s per-axis limits. Each block uses up to 1024 threads along the
height dimension. For H < 1024, one thread is assigned per row, achieving full occupancy. When
H > 1024, threads iterate over multiple rows with stride blockDim. x, ensuring complete coverage
without exceeding the per-block thread limit.

4.2 Compact Channel Propagation

A key performance bottleneck in GSPN-1 arises from GPU concurrency saturation when the number
of active CUDA blocks—proportional to kcyupx X N x C—exceeds the hardware’s concurrent
execution capacity. On GPUs such as NVIDIA A100, each Streaming Multiprocessor (SM) can
host up to 32 resident thread blocks (compute capability 8.0), and with 108 SMs available, roughly
108 x 32 = 3,500 blocks can be active concurrently under ideal conditions. Under typical GSPN
workloads, kernel execution time remains nearly constant up to this scale (about 3—4K concurrent
blocks). Beyond that point, the runtime grows linearly as additional blocks wait in the scheduling
queue. This saturation effect causes GSPN-1 to lose its near-constant runtime scaling when operating
on high-dimensional feature maps (e.g., thousands of channels).

To address this, GSPN-2 introduces a compact multi-channel propagation scheme that reduces
the effective channel concurrency while maintaining expressive multi-channel behavior. The core
idea is to project the input tensor z € RN*XEXHXW into a lower-dimensional proxy subspace
Tproxy € RYXCoroxy XHXW "yhere Cpoxy < C (€22, Chproxy = 8). The propagation is then applied
to this proxy representatlon using shared propagation matrices w; and later restored to the original
C-channel space. This reduces the total block count from kchunk X N X C t0 kchunk X N X Cproxys
reducing it as much as possible to stay well within the hardware concurrency regime (roughly 3—4K
on A100-class GPUs) and thereby sustaining near-constant performance.



Illustrative Single-Channel Case. We use the single-channel case to make the attention analogy
explicit. We replace per-channel weights with a single propagation matrix per column. In this view,
w; will be shared among all the channels, which plays the role of an attention-style affinity matrix
over positions in column ¢, and the per-position input scaling acts like value gating. The per-channel
recurrence thus becomes:

hi,:,c = wihifl,:,c + Ai,:,c © Li,:c = wihifl,:,c + Diag()\i,:,c)xi,:,c (3)

where w; governs spatial propagation along the column, and J; . . preserves per-channel modulation.

This formulation significantly reduces the number of parameters while retaining the same functional
structure. Stacking all channels, the full recurrence h; = W;h;_1 + A;z; still holds, now with
channel-shared w;. To expand Eq. @), we denote H,, X, as the concatenation of all ;. . and
Z;,:,c into vectors. The expansion yields a block lower-triangular matrix form:

A 0 0
wal\q Az 0 0

H,_ | wswala w3z A3 0 T X, = GX,, @
(Mo w)h ([Dieawe)Ae -0 wedpa Ar

where each block G;; is a N x [N matrix representing how the input slice =; contributes to the
output h;—directly analogous to an attention mechanism’s affinity matrix. Here, the channel-shared
matrices w; define dense spatial relationships, while the channel-specific scaling matrices A; inject
feature-wise modulation. This formulation shows that, in the single-channel case, GSPN-2 can be
viewed as an attention-like process with learnable spatial affinities.

Compressive Proxy Dimension. To further relieve concurrency saturation when N x C' is large,
we compress the channel axis before propagation. Concretely, we project x € RNXCXHxW
10 Tproxy € RV X Crroxy X HXW gith Coroxy < C (e.g., Cproxy=8), apply the same columnwise
recurrence in the proxy space using the shared w;, and expand back to C' with a learned 1 x 1
projection. This reduces the grid from Kcpunk X IV X C 10 kchunk X N X Cproxy, shrinking the number
of simultaneously scheduled block slices (e.g., N X Cproxy X H for a row scan). We choose Cproxy
to minimize the active-block budget and delay entry into the post-saturation, near-linear regime on
A100-class GPUs; even when that plateau cannot be fully avoided (very large V), the compression
still cuts queueing and improves SM utilization while preserving multi-channel expressiveness.

4.3 Efficient CUDA Scaling under Large Block-Slice Loads

This section presents CUDA kernel enhance-
ments—particularly grid/block reconfiguration
and on-chip memory strategies—that enable ef-
ficient compact channel propagation even when + Unified Kernel
the block count (k_chunk x N x C) becomes

Very 1arge_ + Coalesced Memory Access
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reduces latency when multiple threads within a  Figure 3: Step-by-step optimization of the GSPN
block access overlapping regions of h;_1, such CUDA kernel. Each bar shows the reduction in
as along a spatial column. The performance forward time (ms) achieved through cumulative
gain depends on configuration: it is most effec- Optimizations, starting from the GSPN-1 baseline.
tive when the reuse per tile is high, the shared- The final implementation (GSPN-2) achieves a
memory footprint fits comfortably within per- 40.0x speedup compared to the baseline.
block limits, and bank conflicts are minimal.

When reuse is low or L1/L2 caching already covers the working set, the benefit diminishes. Therefore,
we enable this shared-memory caching selectively and tune tile size and cS11ice to balance reuse
against occupancy.



2D Block Design for Channel-Parallel Propagation. Building upon the 1D block design in
Sec.[4.1] we extend it to a 2D configuration by introducing a second dimension, cS1ice, such that
each CUDA block has blockDim = (H, cSlice). Within a block, threadIdx.x corresponds to
spatial positions along a column (up to H), while threadIdx.y spans a small group of channel
slices. This enables the block to process multiple channels of the same column in parallel, improving
hardware utilization and memory throughput even when each channel maintains its own propagation
weight w§. Compared to the earlier 1D block layout, this 2D configuration achieves better occupancy
and reduced latency by aligning computation and memory access patterns across both spatial and
channel dimensions, as demonstrated in Section [5.1}

Coalesced Memory Access. A major source of speedup in GSPN-2 comes from enforcing coalesced
global-memory access. We arrange z;, h;, and w; contiguously in memory so that consecutive threads
in a warp access adjacent addresses when reading or writing. This pattern allows the hardware to
combine multiple per-thread transactions into a single wide memory operation, fully utilizing the
available bandwidth and minimizing wasted cycles. By eliminating the irregular, strided accesses
present in GSPN-1, the coalesced layout contributes the largest single performance gain among all
CUDA-level optimizations (see Figure [3).

Stream-Based Concurrency. For multi-directional propagation, GSPN-2 executes each directional
pass on a separate, non-blocking CUDA stream. This allows concurrent kernel execution across
directions, improving hardware utilization by keeping more SMs active—especially on GPUs with
abundant SM resources. The benefit depends on workload balance and available parallelism; it
is most pronounced when the directional passes have similar compute and memory footprints. In
addition, when the grid dimension exceeds CUDA’s per-axis limit of 65,535, GSPN-2 automatically
performs multiple launches with offset indexing to cover the excess range without interrupting the
overall stream concurrency.

S Experiments

To demonstrate the effectiveness of GSPN-2, we design experiments that answer two questions: How
much faster is it? and Does the speed-up preserve—or even improve—task performance? We first
profile the new CUDA kernel, isolating the gains from different factors, such as unified kernel launch,
shared memory, and channel-share weights. We then benchmark GSPN-2 on a suite of vision tasks,
comparing accuracy and throughput against GSPN-1 and other strong baselines. By evaluating both
efficiency and task performance, we demonstrate the benefits of our tightly integrated algorithm and
kernel optimizations.

5.1 Detailed Profiling and Performance Characteristics

To understand GSPN-2’s performance characteristics in depth, we conducted comprehensive pro-
filing across various input configurations, analyzing memory throughput, cache utilization, and
computational efficiency.

Step-by-step CUDA Optimization. We benchmark a typical configuration, i.e., 1024 x 1024 image
size, batch size 16, 8 channels, and quantify the impact of each CUDA kernel optimization term in
Figure[3] The GSPN-1 baseline exhibited suboptimal performance (71.4 ms) due to kernel launch
overhead and inefficient memory access patterns. Our first optimization—a single fused kernel
(Sec. .T)—eliminates thousands of micro-launches by processing entire scan operations within a
single kernel, yielding a notable 1.2x speedup (57.4 ms). Coalesced Memory Access patterns
(Sec. [4.3) maximized memory bandwidth utilization for a substantial 23.9x improvement (2.4
ms). Implementing Shared Memory Cache for hidden states (Sec. 4.3)) reduced global memory
traffic by 1.1x (2.2 ms). Restructuring to 2D Thread Blocks (Sec. 4.1} Sec.4.3) improved thread
organization and data locality for another 1.1x gain (2.1 ms). Compressive channels (Sec .[4.2)
reduced parameter fetch overhead and enhanced cache coherence for a 1.1x speedup (1.9 ms). The
fully optimized GSPN-2 implementation achieves an impressive 40.0x cumulative speedup (1.8 ms)
over the original baseline. We note that the relative impact of each optimization varies with workload
characteristics (batch size, channel count); Section [B.I]in the appendix provides a detailed analysis
under an alternative large-batch configuration (batch size 256, 1 channel), demonstrating that while
coalesced memory access remains the dominant optimization, Shared memory caching and 2D
thread blocks (Sec. exhibit configuration-dependent benefits.



Memory Throughput Analysis. As shown in Table [T NVIDIA Nsight Compute profiling indicates
that GSPN-2 achieves memory throughput near the theoretical limit, with global-memory efficiency
reaching 93% on A100 GPUs. This efficiency remains remarkably stable across a wide range of
batch sizes and spatial resolutions, demonstrating effective saturation of the available bandwidth. In
contrast, GSPN-1 exhibits highly variable throughput—only 3-8% of peak—that further deteriorates
as input dimensions increase.

Table 1: Global memory throughput under typical input configurations on A100 GPU. We show
throughput for a range of input sizes, batch sizes, and channel counts representative of common
deployment scenarios in different tasks. Rather than exhaustively sweeping all variables, we select
practical configurations to demonstrate consistent and significant gains of GSPN-2 over GSPN-1
across diverse settings.

Input Size | Batch | Channels | GSPN-1 Throughput | GSPN-2 Throughput

32x32 32 196 114 GB/s (6.0%) 1832 GB/s (91.8%)
64x64 1 768 86 GB/s (4.5%) 1847 GB/s (92.3%)
64x64 1 1152 35 GB/s (2.1%) 1837 GB/s (92.0%)
64x64 1 32 125 GB/s (6.3%) 1830 GB/s (91.5%)
128x%128 1 32 98 GB/s (4.9%) 1865 GB/s (93.3%)
256x256 1 64 76 GB/s (3.8%) 1842 GB/s (92.1%)
256x256 8 64 94 GB/s (4.7%) 1858 GB/s (92.9%)
512x512 1 128 64 GB/s (3.2%) 1840 GB/s (92.0%)

Performance Scaling with Input Size. ~As shown in the upper row of Figure[d] GSPN-2 consistently
outperforms GSPN-1 across various image resolutions with fixed batch and channel counts. For
large image sizes (1024x1024), we observe speedups of up to 36.8x for forward passes and 25.3x
for backward passes. This substantial improvement is particularly relevant for high-resolution
visual processing tasks such as image generation and super-resolution, where spatial dimensions
significantly impact computational demands. The performance gap widens as image resolution
increases, highlighting GSPN-2’s superior ability to handle spatially dense computations efficiently
through its optimized memory access patterns and unified kernel design.

Performance with Varying Batch Size and Channel Dimensions. The lower row of Figure
demonstrates GSPN-2’s exceptional performance in scenarios requiring large batch sizes or high
channel dimensions—critical requirements for video generation, foundation model visual towers, and
multimodal applications. With three distinct performance lines (GSPN-1 and GSPN-2), we observe
that GSPN-2 maintains consistent 2-4x speedups over GSPN-1 even as batch sizes scale to 256 or
channel counts increase to 1024. For instance, when processing inputs with 256 channels, GSPN-2
achieves a 27.4x speedup on forward passes and 48.6x on backward passes. These improvements
are particularly valuable for production inference systems handling multiple streams simultaneously
or for models requiring high feature dimensionality. The channel-sharing approach (Sec.
provides additional efficiency gains of up to 1.5x in these demanding scenarios, enabling practical
deployment of GSPN architectures in compute-intensive applications like real-time video processing
and multimodal foundation models.

L1 Cache Effectiveness. One surprising finding from our profiling is the effectiveness of the L1
cache even without explicit shared memory caching in certain configurations. When we experimented
with a shared memory buffer to store previous hidden states (h;—1), we observed that performance
remained largely unchanged compared to relying on L1 cache. Detailed profiling revealed L1
cache hit rates of approximately 35% for the standard implementation. Interestingly, when using
shared memory explicitly, L1 hit rates dropped to near 0%, with those accesses now served from
shared memory instead. Despite this shift in memory hierarchy usage, latency remained comparable
between both approaches, suggesting modern GPU L1 caches are highly effective for structured
access patterns. The transposed data layout and coalesced access patterns enable effective hardware
caching, even without explicit shared memory management in some cases. However, for maximum
portability across GPU architectures and to ensure deterministic performance, the shared memory
implementation remains preferable.

Streaming Multiprocessor Utilization Our profiling reveals an important relationship between
input configuration and SM utilization. With GSPN-2’s 2D thread organization strategy, SM occu-
pancy varies significantly based on workload characteristics. For large batch sizes and channel counts,
SM occupancy approaches 100%, fully utilizing the GPU’s 108 SMs on A100. However, for small
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Figure 4: Runtime Performance Comparison of GSPN-1 and GSPN-2. We show forward and
backward pass execution times (in milliseconds) across different channel counts. Results are presented
for various configurations. GSPN-2 greatly improves the runtime of both forward and backward
passes across different cases.

batch sizes and channel counts, occupancy can drop significantly (as low as 20-30%). This occurs
because when processing independent chunks, each chunk requires one block, limiting parallelism for
small input dimensions. This suggests potential areas for further optimization—particularly for low
batch size, low channel count scenarios where we could further decompose the problem to increase
parallelism across SMs.

Table 2: Performance of models on ImageNet at the resolution of 2242, Colors denote different
backbone types: for CNN:s, for Transformers, and for Raster scan (i.e., 1D
linear propagation) methods.
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5.2 Image Classification

In Table 2] we present a comparative analysis of ImageNet-1K classification performance across
three architectural paradigms: ConvNet-based [29,|30], Transformer-based [31} 133} 136} 35} 46| 49],
and sequential-based (RS scan) models [25] 26, 37, [27, 40, 138l [39] of varying sizes. For GSPN-2
models, the ImageNet experiments incorporate several key design choices: propagation weights w;
are shared across channels in all GSPN modules, and a compressive proxy dimension Cpoxy is set to
2. This reduction in channel dimensionality allows the saved parameters to be reallocated for deeper
or wider network architectures. Additionally, we integrate the Local Perception Unit (LPU) [52]
at the beginning of each block and FFN. The MESA [53]] technique is also employed to mitigate
overfitting, contributing a further 0.2% accuracy improvement to some variants.
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Figure 5: Qualitative text-to-image results generated from our GSPN-2 SDXL model. We enable
generation up to 16K resolution on a single A100 GPU while reducing inference time by up to 93x
on the SDXL model.

Our GSPN-2 models, benefiting from the joint algorithmic and system-level redesign detailed in
Section 4} demonstrate notable advancements. The GSPN-2 series builds upon the strong foundation
of GSPN-1, introducing refinements that enhance both performance and efficiency. GSPN-2-T
achieves a competitive 83.0% accuracy with significantly fewer parameters (24M vs. 30M for GSPN-
T) and lower computational cost (4.2G MACs vs. 5.3G MACs for GSPN-T). It outperforms SSMs
such as Vim-S (80.5%), VMamba-T (82.2%), and notably surpasses LocalVMamba-T (82.7%) by
0.3% accuracy with fewer MACs (4.2G vs 5.7G), while remaining competitive with leading ConvNets
and Transformers in its category. GSPN-2-S achieves an impressive 84.4% accuracy, marking a
significant +0.6% improvement over GSPN-S (83.8%) with only a marginal increase in MACs (9.2G
vs 9.0G) while using the same number of parameters (50M). This performance places GSPN-2-S
ahead of strong competitors like MambaOut-Small (84.1%) and UniFormer-B (83.9%), showcasing
its enhanced efficiency and effectiveness. At the base model scale, GSPN-2-B also achieves an
excellent 84.9% accuracy, improving upon GSPN-B (84.3%) by +0.3% while reducing MACs (14.2G
vs 15.9G) with the same 89M parameters.

5.3 Text-to-Image Generation

To evaluate the efficiency and performance of GSPN-2 in high-resolution generative tasks, we conduct
experiments on text-to-image generation using the Stable Diffusion XL (SDXL) framework, with
results summarized in Figure 3]

Building upon the GSPN-1 architecture, GSPN-2 incorporates several key enhancements detailed in
SectiongE and Proxy Dimension Compression to 1/8 of the original channel dimension (Cyroxy =
C'/8). These redesigns enable faster inference without compromising image quality.

Compared to the baseline SDXL model, GSPN-2 achieves a 32x speedup in 4K image generation,
showcasing exceptional efficiency. For ultra-high-resolution 16K images, GSPN-2 outperforms
further, reducing inference time by 93 x compared to GSPN-1’s 84 x improvement.

6 Limitations

GSPN-2’s performance gains diminish when the product of batch size and channel count (BS x C') is
small (Section [B)), and practical evaluation on long-context video datasets remains underexplored.
The current implementation lacks CLS and register tokens commonly used in Vision Transformers,
limiting direct applicability as a drop-in attention replacement in models relying on summary tokens
(Section 2?). Our dense prediction evaluations primarily use 480-512 pixel images; higher-resolution
testing would better demonstrate scalability advantages. Despite these limitations, GSPN-2 rep-
resents significant progress in efficient spatial sequence modeling with clear directions for future
enhancements.

7 Conclusion

We introduce GSPN-2, which overcomes the performance bottlenecks of GSPN-1 through a unified
CUDA kernel, channel-agnostic propagation, and low-dimensional proxy features, delivering up to
52x speedup and near-peak hardware utilization without sacrificing accuracy across classification
and generation tasks. This establishes GSPN-2 as a practical and scalable solution for global spatial
reasoning in high-resolution vision applications.
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Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
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Justification: We utilize public datasets and include the detailed implementation in the Paper
for reproducibility and will release the code upon publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4 and Appendix for the full details of our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow existing works [14,27,26] to not involve statistical significance in
our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 4 and Appendix for details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We believe that no ethics guidelines were violated.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:No societal impact of the work was discussed. Potentially, the work could have
a positive impact in terms of reducing carbon emissions caused by large-scale models.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are not releasing any new datasets or pre-trained models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All creators or original owners of assets used in the paper are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No asset is submitted.
Guidelines:

* The answer NA means that the paper does not release new assets.
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* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLM is used in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Appendix
This supplementary is organized as follows:

¢ In Section @ we compare GSPN-2 variants with CNNs, transformers, and SSMs on
ImageNet-1K.

* In Section |[B| we evaluate runtime performance across varying batch sizes and channel
dimensions. Section provides detailed step-by-step optimization analysis under a
large-batch configuration.

* In Section|C] we evaluate GSPN-2’s text-to-image generation on the COCO benchmark.

* In Section [D] we analyze the compressive proxy dimension strategy through low-rank
approximation, with ablation studies on the accuracy-throughput trade-off.

Figure [ST] provides a comprehensive comparison of GSPN-2 (Tiny/Small/Base variants) with other
leading architectures like CNNs, Transformers, and other SSMs on the ImageNet-1K benchmark. The
comparison focuses on Top-1 accuracy, throughput (images/second), model parameters, all evaluated
at an image resolution of 2242

Take the Tiny model as an example, from the figure, we observe the following:

* CNNs: Models like ConvNeXt-T achieve 82.1% accuracy with 29M parameters and 4.5G
FLOPs, and a throughput of 1189. Larger variants like ConvNeXt-B reach 83.8% accuracy
but use 89M parameters and 15.4G FLOPs, with throughput dropping to 435.

* Transformers: DeiT-S, a comparable small model, has 22M parameters and 4.6G FLOPs,
achieving 79.8% accuracy with a throughput of 1759. Larger Transformer models like Swin-
B (88M params, 15.4G FLOPs) reach 83.5% accuracy with a throughput of 458. NAT-B
shows higher accuracy (84.3%) with 90M parameters and 13.7G FLOPs, but throughput is
not reported.

¢ Other SSMs: VMamba-T provides a high throughput of 1686 with 30M parameters and
4.9G FLOPs, achieving 82.6% accuracy. LocalVMamba-T uses 26M parameters and 5.7G
FLOPs for 82.7% accuracy, but its throughput is considerably lower at 394.

¢ GSPN-2-T (Ours): Our GSPN-2-T model stands out by achieving a strong Top-1 accuracy
of 83.0%. It accomplishes this with a remarkably efficient parameter count of only 24M and
low GFLOPs of 3.6G. While its throughput of 1544 images/second is slightly lower than the
fastest models like DeiT-S or VMamba-T, it is highly competitive, especially considering its
superior accuracy-to-parameter and accuracy-to-FLOPs ratio. For instance, compared to
DeiT-S, GSPN-2-T offers 4+3.2% higher accuracy with only 2M more parameters and 1G
fewer FLOPs. Compared to VMamba-T, GSPN-2-T is +0.4% more accurate, uses 6M fewer
parameters, and requires 1.3G fewer FLOPs, while having a comparable throughput.

A Comprehensive GSPN-2 comparison on ImageNet-1K

This comparison highlights GSPN-2’s excellent trade-off between accuracy, model size, and compu-
tational efficiency. It achieves accuracy comparable to or better than many larger models from other
architectures while maintaining a smaller parameter footprint and lower GFLOPs. The throughput,
while not the absolute highest, is very strong for its accuracy class, making GSPN-2 a compelling
choice for resource-constrained environments or applications where a balance of speed and predictive
power is crucial.

B Detailed Analysis of Performance with Varying Batch and Channel
Dimensions

Figure [] highlights that GSPN-2 achieves significant speedups, particularly when batch sizes or
channel dimensions are large. This appendix provides a more detailed look at when the full GSPN-
2 optimizations (blue line in plots, including shared memory for hidden states) begin to offer a
substantial advantage over a GSPN variant without explicit shared memory caching for hidden states.
This analysis is crucial for tasks like visual encoder training or video processing, where the product of
batch size and channel dimensions (‘BS * C’) can vary widely and significantly impact performance.
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Figure S1: Comparison of GSPN-2 vs. State-of-the-art architectures on ImageNet-1K. We
present a comprehensive analysis of the trade-offs between accuracy, model size, and throughput
for GSPN-2 compared to leading state-of-the-art architectures. The results highlight GSPN-2’s
effectiveness, positioning GSPN-2 as an ideal solution for resource-constrained environments and
applications requiring both speed and predictive accuracy.
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Figure S2: Runtime Performance Comparison of GSPN-1 and GSPN-2. We show forward
pass execution times (in milliseconds) across different batch size times channel counts. Results are
presented for various configurations. GSPN-2 greatly improve the runtime of forward across different
cases especially when batch size times channel counts become large.

Observing Figure[S2} we can see a clear trend: the point at which GSPN-2’s full optimizations deliver
more pronounced benefits depends on the ‘BS * C’ product.

Implications for Model Selection: This detailed observation underscores that the effectiveness
of GSPN-2’s most advanced optimizations, such as shared memory caching for hidden states, is
magnified when the aggregate workload (represented by ‘BS * C’) increases. For tasks characterized
by very large effective batch sizes (common in large-scale visual model training or high-throughput
video analysis), deploying the fully optimized GSPN-2 is critical for maximizing computational
efficiency.

Conversely, for scenarios where the ‘BS * C’ product remains relatively small, the performance
difference between GSPN-2 and GSPN-1 might be less pronounced. In such cases, the GSPN-1
configuration could offer a good trade-off. This suggests a potential adaptive strategy: one could
dynamically select between a GSPN-1-like configuration and the full GSPN-2 based on the input
dimensions and batch size to achieve optimal performance across diverse computational scenarios.
This adaptability is particularly relevant as models are often deployed in varying inference settings or
trained with different batching strategies.

Impact of Channel Dimensionality on Optimization Effectiveness: Comparing Figure [S3|and
Figure[S4]reveals how different workload characteristics influence the relative importance of each
optimization. In the large channel configuration (1152 channels), the Compressive channels optimiza-
tion emerges as the dominant contributor, achieving a 7.8x speedup compared to more modest gains
in lower-channel scenarios. This substantial improvement stems from the fact that higher channel
counts amplify redundant computations across feature dimensions—precisely the inefficiency that
our compressive channel algorithm targets. By applying an 8x compression ratio to reduce the
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Figure S3: Step-by-step CUDA kernel optimization under large batch configuration. Each bar
shows the cumulative reduction in forward time (ms) for a high-throughput scenario (1024x1024
image, batch size 256, 1 channel). This configuration represents typical large-batch inference or video
processing workloads. The optimizations deliver a 36.8x speedup from GSPN-1 baseline (143.7 ms)
to the final GSPN-2 implementation (3.9 ms), demonstrating GSPN-2’s effectiveness across diverse
deployment scenarios.
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Figure S4: Step-by-step CUDA kernel optimization under large channel configuration. Each
bar shows the cumulative reduction in forward time (ms) for a high-channel scenario (1024x1024
image, batch size 1, 1152 channels). This configuration is representative of modern deep learning
architectures with wide feature maps. The optimizations deliver a 151.4x speedup from GSPN-
1 baseline (863.2 ms) to the final GSPN-2 implementation (5.7 ms). Notably, the Compressive
channels optimization, which employs an 8x compression ratio to reduce the effective channel
dimension, achieves a remarkable 7.8x speedup (from 49.8 ms to 6.4 ms), significantly outperforming
its contribution in other configurations and highlighting the algorithmic advantage of our channel
compression strategy for high-dimensional feature processing.

effective channel dimension (e.g., from 1152 to 144 channels), GSPN-2 transforms what would
otherwise be a computational bottleneck into efficient parallel execution while preserving essential
feature information. This result validates that our algorithmic innovation in channel compression is
particularly impactful for modern neural network architectures that frequently employ large channel
dimensions (e.g., 768, 1024, or 1152 channels in vision transformers and diffusion models).

B.1 Optimization Analysis Under Large Batch Size Configuration

While Figure [3|demonstrates the optimization journey for a moderate configuration (1024x1024,
batch size 16, 8 channels), here we examine a complementary scenario with significantly larger batch
size but minimal channel dimension (1024x1024, batch size 256, 1 channel). This configuration is
representative of high-throughput inference scenarios such as batch video processing, multi-stream
parallel generation, or large-scale model serving where many requests are processed simultaneously.

As shown in Figure [S3] the optimization progression follows a similar pattern but with distinct
characteristics:
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GSPN-1 Baseline Performance. The baseline GSPN-1 implementation exhibits 143.7 ms execution
time. Despite having only 1 channel (reducing per-channel computational overhead), the large batch
size of 256 amplifies the inefficiencies from repeated kernel launches and poor memory access
patterns. With 256 batches, the kernel launch overhead becomes even more pronounced, as each
propagation step must coordinate across a much larger working set.

Unified Kernel (1.03x speedup, 139.2 ms). Consolidating the multi-kernel launches into a single
kernel reduces execution time to 139.2 ms, yielding a 1.03x speedup. While this improvement is more
modest compared to the 1.2x gain in the main paper configuration, it still demonstrates consistent
benefits. The relatively smaller gain here suggests that with only 1 channel, the per-channel kernel
launch overhead is less severe, but the benefit of unified execution remains valuable.

Coalesced Memory Access (34.0x speedup, 4.1 ms). This optimization delivers the most dramatic
improvement, reducing runtime to 4.1 ms—a 34.0x speedup over the previous step. The impact
is even more pronounced than the 23.9x gain in the 8-channel configuration, highlighting that
memory access patterns become increasingly critical with larger batch sizes. With batch size 256,
ensuring coalesced memory access patterns is essential to saturate the memory bandwidth efficiently.
Uncoalesced accesses would be catastrophic at this scale, causing severe memory traffic congestion.

SRAM (0.9x speedup, 4.5 ms). Interestingly, explicit shared memory caching for hidden states
actually increases execution time slightly to 4.5 ms, yielding a 0.9x slowdown. This counter-intuitive
result occurs because with only 1 channel, the memory footprint of hidden states is minimal, and the
L1 cache is already sufficient to capture reuse patterns efficiently. The overhead of explicit shared
memory management outweighs any potential benefits in this low-channel scenario. This observation
validates our discussion in Section[5.1]about L1 cache effectiveness and confirms that shared memory
optimization is most beneficial when channel counts are higher.

2D Thread Blocks (1.0x speedup, 4.4 ms). Restructuring to 2D thread blocks reduces runtime to
4.4 ms, achieving a marginal 1.0x speedup (essentially neutral performance). Unlike the 1.1x gain
observed in the main 8-channel configuration, the 2D block restructuring provides minimal benefit
here. This suggests that with only 1 channel, the single-channel dimension is insufficient to fully
exploit the advantages of 2D thread organization, and the thread scheduling is already well-optimized
by the previous coalesced memory access patterns.

Compressive Channels (1.1x speedup, 4.0 ms). Applying compressive proxy dimension reduction
reduces runtime to 4.0 ms (effective final runtime 3.9 ms after fine-tuning), achieving a modest
1.1x speedup. While this configuration already uses only 1 channel, the proxy compression strategy
still provides minor benefits through reduced memory footprint and improved cache utilization.
However, the gain is significantly smaller compared to multi-channel scenarios where channel
compression directly reduces the computational load. This highlights that the proxy dimension
benefit is configuration-dependent and most impactful in high-channel scenarios.

Overall Speedup and Implications. The cumulative speedup from GSPN-1 (143.7 ms) to GSPN-2
(3.9 ms) is 36.8x, which is comparable to the 40.0x improvement shown in the main paper. This
demonstrates that GSPN-2’s optimizations deliver consistent and substantial performance gains across
diverse configurations. However, the relative contribution of each optimization stage varies with
workload characteristics:

* Memory coalescing remains the dominant optimization regardless of configuration, con-
sistently providing 24-34x improvements. The 34x gain in this large-batch, single-channel
scenario exceeds the 23.9x gain in the 8-channel configuration, demonstrating its critical
importance for high-throughput workloads.

* Shared memory caching benefits are highly configuration-dependent. It shows significant
gains with multiple channels but can actually degrade performance (0.9x slowdown) in
single-channel scenarios due to management overhead when L1 cache is already sufficient.

2D thread blocks provide minimal benefit (1.0x) in single-channel configurations, contrast-
ing with the 1.1x gain in multi-channel scenarios. The effectiveness depends on having
sufficient channel dimensionality to exploit parallel thread organization.

* Compressive proxy dimension provides modest benefits (1.1x) even in single-channel
scenarios through improved memory footprint and cache utilization, though gains are most
pronounced in high-channel configurations.

23



This analysis reinforces that GSPN-2’s co-designed optimizations are robust across different de-
ployment scenarios, though practitioners should be aware that the relative importance of specific
optimizations depends on their particular workload characteristics (batch size, channel count, spatial
dimensions).

C Text-to-image Generation

In this section, we evaluate GSPN-2’s capabilities in text-to-image generation, a task demanding
strong understanding of both textual prompts and the generation of coherent, high-resolution visual
outputs. We compare GSPN-2 with several relevant baselines and its predecessor, GSPN-1, on the
COCO benchmark, with all models generating images at a 1024 x 1024 resolution. The results are
presented in Table@ The baseline model for this comparison is Stable Diffusion v1.5 (SD-v1.5) [2].
We also include recent sequence modeling approaches such as Mamba [12], Mamba?2 [13]], and
Linfusion [54]]. For these models, text embeddings are treated as part of the visual token sequence
during propagation.

FID vs. Inference Time vs. CLIP-T

Image Resolution @ - 0.3050
Table S1: Cross-resolution generation on the (%) @ ==

COCO benchmark under 1024 x 1024 resolu-
tion. Lower FID (] ) and higher CLIP-T (1) stand
for better image quality and text-image alignment.
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As shown in Table [ST] and Figure [S5] our GSPN-2 model achieves an FID of 33.21 and a CLIP-T
score of 0.286. While GSPN-1 currently shows a slight edge in these specific metrics, GSPN-2’s
performance is competitive and close to the SD-v1.5 baseline (FID 32.71, CLIP-T 0.290) with faster
inference.

A key characteristic of the GSPN architecture (both GSPN-1 and GSPN-2) is its inherent adaptability
to arbitrary image resolutions without requiring extra normalization layers or strategies for unseen
resolutions, a common necessity for some other methods like Mamba and Linfusion when faced
with resolutions not encountered during training. The Stability-Context property ensures stable and
effective long-range propagation, allowing GSPN-2 to efficiently capture broad spatial dependencies.

GSPN-2, while leveraging the core principles of GSPN-1, incorporates system-level co-designs
and algorithmic refinements aimed at enhancing efficiency and scalability The results with Figure
5 in the main paper indicate that GSPN-2 maintains strong generative capabilities, comparable to
established baselines, while benefiting from these architectural improvements for efficient text-to-
image generation.

D Compressive Proxy Dimension as Low-Rank Approximation

The compressive proxy dimension (Cproxy) strategy addresses GPU concurrency saturation by project-
ing inputs X € RVXEXHXW 6 3 compressed space Xproxy € RV X oo X HXW where Cpyoxy < C,
applying GSPN propagation in this reduced space, then projecting back to C' dimensions. This is
analogous to low-rank matrix factorization, reducing CUDA workload from kcpyx X NV X C' slices to
Fchunk X N X Cproxy, preventing GPU saturation while maintaining representational capacity. Table
presents an ablation on Cyoxy for GSPN-2-Tiny on ImageNet-1K, analyzing the accuracy-throughput
trade-off.

Table shows minimal accuracy degradation (0.2% for 16x compression from Cpoxy = 32 to
proxy = 2) while achieving 1.4x throughput improvement. The aggressive 48:1 compression at
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Table S2: Ablation on proxy dimension Cyroxy. GSPN-2-Tiny on ImageNet-1K with varying
compression ratios.

Chroxy | Accuracy (%) | Throughput (img/s)

2 83.0 1544
4 83.0 1492
8 83.0 1387
16 82.9 1293
32 82.8 1106

Chroxy = 2 demonstrates that GSPN propagation operates effectively in low-dimensional spaces, as
spatial dependencies dominate over channel-wise dependencies.
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